1 1	A	A B C	D	E	F	G	Н		J	К	L	M N	0 P
P Carbon coefficients: Coal Maine Migrato State Carbon coefficients: Coal Maine Migrato State Commentations Project Commentations Project P Carbon coefficients: Coal Commentations Project Commentations Project P Carbon coefficients: Coal Commentations Project Commentations Project Commentations Project P Carbon coefficients: Coal Coefficients: Coal Coefficients: Coal Coefficients: Coal P Carbon coefficients: Coal Coefficients: Coal Coefficients: Coal Coefficients: Coal Coefficients: Coal P Carbon coefficients: Coal Coefficients: Coal Coefficients: Coal Coefficients: Coal Coefficients: Coal P Carbon coefficients: Coal Coefficients: Coal Coefficients: Coal Coefficients: Coal Coefficients: Coefficients: Coal Coefficients: Coefficient: Coefficient: Coefficient: Coeffi	1												
United Wighting Service: Caliboration Majors Project Copyright Clinate Mitigation Service: Caliboration Majors Project 10 10 11 12 12 12 12 12 12 12 12 12 12 12 12	2						Carbon	coefficier	nts: Coal				
Image: control biological control content contro control control control control control control contro	3						Clim	ate Mitigation Serv	vices				
Subject Calculation of Coal Coefficients by Coal Rank (EPA values) Addition Conversion use Adjusted Not including motions (nor to adjusting for coalition and nor fut uses) Addition Conversion use Adjusted Not including motions (nor to adjusting for coalition and nor fut uses) Addition Conversion use Adjusted Not including motions (nor to adjusting for coalition and nor fut uses) Addition Conversion use Adjusted Not including motions (nor to adjusting for coalition and nor fut uses) Adjusted Operation andjusted for condition and nor fut uses) <th< td=""><td>4</td><td></td><td></td><td></td><td></td><td></td><td>Ciiii</td><td>Rick Heede</td><td>1003</td><td></td><td>Commight Climate</td><td>Mitigation Comile</td><td></td></th<>	4						Ciiii	Rick Heede	1003		Commight Climate	Mitigation Comile	
6 10 10 10 10 10 10 10 10 10 10 10 10 10	5						C	arbon Majors Projec	ct		copyright climate	e miligation Service	es
Bit Calculation of Coal Coefficients by Coal Rank (PCV object) Note including mething, in	6							21-May-12					
B B B Calculation of Coal Coefficients by Coal Rank (EPA values) Mon-energy uses Adjusted Not including methans, includi sleenhere 10 10 100 3.664191 020/c 0.000 ostation) Coal Coefficients includi sleenhere includi sleenhere includi sleenhere 10 100 3.664191 020/c 0.000 ostation) Coal Coefficients includi sleenhere includi s	<u>/</u>												
3 1 Logical control Logical control Contro Contro Contro <	8		Calaulat	ion of Cool Coo	fficiente hy (Cool Donk (EDA	veluee)	ı r	Nen energy uses	A diverse d	Not including mothers		
10 Lipst in allocing to solution and provide lates of provide lates	9		Calculat	ion of Coal Coe	mcients by C	JOAI KANK (EPA	values)	2.664101.602/6	Non-energy uses	Adjusted	Not including methane,		
Light Light Bituminous Bitumino	10			(prior to adjusting	for oxidation a	nd non-fuel uses)		3.664191 CO2/C	(100% oxidation)		included elsewhere		
1 Sub-Burnhous Anthracto Anthracto 1/2.5 2.6.46 4.6.5 50.3 1/2.5.2 0.6.46 0.0395 1/2.643	11	Lignite	Million Btu/sh ton	kgC/million Btu	kgC/ton	kgC/tonne	A1 2%	Tonne CO2/tonne	adjustment factor	tonne CO2/tonne coal	Lignite		IS ave utility coal
Image: construction 23.83 25.64 25.64 25.64 1.111100000000000000000000000000000000	13	Sub-bituminous	17.21	26.20	456.4	503.1	50.3%	1.8434	0.9998	1.8431	Sub-bituminous	vear	million Btu/ton
13 Arthracte (1) 25.09 2.8.4 709.4 77.1% 2.814 0.9998 2.600 Arthracte (1) 155 155 Mailurgical coal Thermal coal 25.58 507.2 73.84 74.0% 2.0510 0.9998 2.600 Arthracte Metallurgical coal 1955 13 197.3 25.74 507.8 75.98 74.0% 2.0510 0.9998 2.6007 Arthracte Metallurgical coal 1955 202 197.3 25.74 507.8 75.98 74.0% 1955 1955 202 197.3 25.74 507.8 75.98 74.0% 1955 1956 1957	14	Bituminous	24.93	25.47	635.0	699.9	70.0%	2.5647	0.9998	2.5643	Bituminous	1950	23.94
15 Metallargical coal 22.82 2.5.4 67.2 73.8.8 74.0% 2.7106 0.9998 2.7104 Metallargical coal 1960 13 10.97.8 25.39 25.99 25.99 25.99 25.99 25.99 25.99 1960 1973 1	15	Anthracite	25.09	28.24	708.4	780.9	78.1%	2.8614	0.9998	2.8609	Anthracite	1955	24.06
Internal Cola Internal	16	Metallurgical coal	26.28	25.54	671.2	739.8	74.0%	2.7108	0.9998	2.7104	Metallurgical coal	1960	23.93
13 1000000000000000000000000000000000000	18		prod weighted av	25.99	307.8	222.0	30.0%	2.0510	0.9998	2.0507	mermai coai	1970	23.70
201 222 223 224 224 225 224 225 226 226 226 226 226 226 226 226 227 226 227 226 227 226 227 227	19		u. e.e. neightea av	20.00								1975	21.78
1 Carbon Majors applies PCC-derived coefficients in "Coal Emissions" worksheet 1985 22 22 22 23 24 25 25 26 20	20											1980	21.30
223 234 235 236 236 236 236 237 237 237 237 237 237 237 237 237 237	21				Carl	oon Majors app	olies IPCC-der	ived coefficients	s in "Coal Emission	ns" worksheet		1985	20.96
1 1	22		Calculation	of Coal Coefficie	ante by Coal	Pank (IDCC def	oult values)	1				1990	20.78
Image: constraint of the server of	24		Calculation	(prior to adjusting	for oxidation a	nd non-fuel uses)	auit values)	1	Non-energy uses	Adjusted	Not including methane.	2000	20.54
1 0	25			IPCC default value	IPCC values	calculation		3.664191 CO2/C	(100% oxidation)	Coal Coefficient	included elsewhere	2005	19.99
Lignite Lignite 11.90 27.60 328.44 32.68 1.2035 0.9998 1.203 Lignite artmetic average 29 Multical average 13.90 26.20 495.51 49.56 0.9998 2.439 Authracte Bituminous 31 25.80 25.80 25.80 77.56 72.66 2.439 0.9998 2.439 Antracte 33 Antracte 28.70 26.80 775.56 72.69 2.665 0.9998 2.62 Metallurgical coal Thermal c	26			GJ/tonne	kgC/GJ	kgC/tonne	Percent C	Tonne CO2/tonne	adjustment factor	tonne CO2/tonne coal		2010	19.61
Sub-futuminous 18.90 2.6.20 495,16 49.5% 1.8.14 0.9998 1.8.14 0.9998 2.4.39 Sub-futuminous Autracte 30 Anthractic 2.6.70 2.6.80 675,56 71.56 2.6.80 0.9998 2.6.22 Anthractic Anthractic Autracte Autracte <td< td=""><td>27</td><td>Lignite</td><td></td><td>11.90</td><td>27.60</td><td>328.44</td><td>32.8%</td><td>1.2035</td><td>0.9998</td><td>1.203</td><td>Lignite</td><td>arithmetic average</td><td>20.32</td></td<>	27	Lignite		11.90	27.60	328.44	32.8%	1.2035	0.9998	1.203	Lignite	arithmetic average	20.32
Lab Lab <thlab< th=""> <thlab< th=""> <thlab< th=""></thlab<></thlab<></thlab<>	28	Bituminous		18.90	26.20	495.18	49.5%	1.8144	0.9998	1.814	Sub-Dituminous Bituminous	average of bit. & su	21.09
Image: Second	30	Anthracite		26.70	26.80	715.56	71.6%	2.6219	0.9998	2.622	Anthracite	ave bit & sub-bit., i	20.00
32 Thermal coal 22.30 26.00 581.10 58.1% 2.129 0.9998 2.129 Thermal coal 34 thermal coal is assumed to be the average of bituminous and us-bituminous and us-bitu	31	Metallurgical coal		28.20	25.80	727.56	72.8%	2.6659	0.9998	2.665	Metallurgical coal		
33 Thermal coal is assumed to be the average of bitumnous Inked to "Coal Emissions" worksheet, column "F1" (2010) Thermal: Sub-bit 35 36 36 Average of the EPA and IPCC coefficients Not including methane, included deswhere Not including methane, included deswhere PCC / EPA values 37 38 37 38 36 Coal Coefficients Not including methane, included deswhere PCC / EPA values 40 37.002 37.006 1.3558 0.9998 1.8286 Sub-biturninous 41 43 49.95% 1.8289 0.9998 1.8286 Sub-biturninous 43 43 43.35 7.048 2.7417 0.9998 2.8879 44 57.043 57.043 2.7664 2.0902 0.9998 2.8879 44 45 68.7.99 68.87.9 6.884 0.9998 2.6879 45 68.7.9 68.7.9 6.896 2.0902 0.9998 2.6879 47 48 91.63% 57.064 2.0902 0.9998 2.6879 47 48 91.63% 93.41% 93.41% 93.41% 47 48 91.63% 93.41% 93.41% 93.41% 47 100 walue 1	32	Thermal coal		22.35	26.00	581.10	58.1%	2.1293	0.9998	2.129	Thermal coal		
Inclusion Inclusion Inclusion Inclusion Inclusion Inclusion 36 36 36 37 37 38 39 40 40 40 40 40 40 40 40 40 40 40 40 40	33			thermal coal is ass	umed to be the	average of bitumi	nous and sub-bit	uminous	linked to "Coal En	nissions" worksheet, co	lumn "F1" (2010)	Thermal: Sub-bit	14.8%
Average of the EPA and IPCC coefficients 36 37 38 Calculation of Coal Coefficients by Coal Rank (IPCC default values) Non-energy uses Coal Coefficient Not including methane, Average EPA & IPCC Include alsewhere include alsewhere kgC/tonne PEC / EPA values PEC / EPA values 40	35			ince does not spe	city average boi		ue, and ngure ma	ly be revised				mermai. Dituminou	14.570
37 Calculation of Coal Coefficients by Coal Rank (IPCC default values) Non-energy uses Coal Coefficient Not including methane, included elsewhere Included elsewhere	36						Average of t	he EPA and IPCC	C coefficients				
100 Control of Control Control Control of Contro of Contrecontecontrol of Contrecontecontrol of Control of Control	37		Calculation	of Coal Coefficie	ants by Coal	Rank (IPCC def	ault values)	ן ר	Non-energy uses	Coal Coefficient	Not including methane		
40 41 41 42 42 42 43 43 44 44 44 44 44 44 44 44 44 44 44	39		Guidaudon			calculation		3.664191 CO2/C	(100% oxidation)	Average EPA & IPCC	included elsewhere	IPCC / EPA values	
41 370.02 37.0% 1.3558 0.9998 1.3556 Lignite 79.80% 42 43 499.13 499.83 49.9% 1.8289 0.9998 1.8256 Sub-bituminous 98.43% 44 44 74.8% 2.5019 0.9998 2.6015 Bituminous 95.10% 45 74.8.23 74.8% 2.7417 0.9998 2.6087 Metallurgical coal 99.83% 46 733.69 73.4% 2.0902 0.9998 2.0898 Thermal coal 103.81% 47 103.81% 57.043 57.0% 2.0902 0.9998 2.0898 Thermal coal 103.81% 49 103.81% 103.81% 103.81% 103.81% 103.81% 103.81% 49 103.81% 104.82% 109.998 2.0898 Thermal coal 103.81% 50 104.74% kJ/kg kJ/kg kJ/kg kJ/kg 104.91% 103.81% 51 104.74% low value low value high value btu per lb EPA values T 52 104.91% </td <td>40</td> <td></td> <td></td> <td></td> <td></td> <td>kgC/tonne</td> <td>Percent C</td> <td>Tonne CO2/tonne</td> <td>adjustment factor</td> <td>tonne CO2/tonne coal</td> <td></td> <td>percent</td> <td></td>	40					kgC/tonne	Percent C	Tonne CO2/tonne	adjustment factor	tonne CO2/tonne coal		percent	
44 49.93,13 49.93,6 1.8289 0.9393 1.8286 Sub-Dituminous 98.43% 43 68.279 68.3% 2.5015 Bituminous 91.63% 91.63% 44 748.23 74.8% 2.7417 0.9998 2.6879 Metallurgical coal 98.43% 45 733.69 73.4% 2.6884 0.9998 2.6879 Metallurgical coal 98.34% 46 570.43 57.0% 2.0902 0.9998 2.6879 Metallurgical coal 98.34% 47 103.81% 57.0% 2.0902 0.9998 2.0898 Thermal coal 103.81% 49 570.43 57.0% 2.0902 0.9998 2.6879 Metallurgical coal 103.81% 49 103.81% 103.81% 103.81% 103.81% 103.81% 103.81% 49 570.43 57.0% 2.0902 0.9998 2.0698 Thermal coal 103.81% 50 kcal /kg kJ/kg kJ/kg kJ/kg tMithion Bu/sh ton tt 53 fow value high value low value	41					370.02	37.0%	1.3558	0.9998	1.3556	Lignite	79.80%	0.050
Image: Section of the secting of the secting of the sectin	42					499.13	49.9%	2 5019	0.9998	2 5015	Bituminous	96.43%	0.852
45 46 47 47 48 49 570.43 73.69 570.43 73.4% 570.43 2.6884 570.43 0.9998 0.9998 2.6879 2.0898 Metallurgical coal Thermal coal 98.34% 103.81% 47 48 49 50 47	44					748.23	74.8%	2.7417	0.9998	2.7412	Anthracite	91.63%	0.075
46 47 48 49 50 570.43 57.0% 2.0902 0.9998 2.0898 Thermal coal 103.81% 49 50	45					733.69	73.4%	2.6884	0.9998	2.6879	Metallurgical coal	98.34%	
1/4 48 1/4 49 1/4	46				L	570.43	57.0%	2.0902	0.9998	2.0898	Thermal coal	103.81%	
International Energy Agency International Energy Agency 30 www.iea.org/stats/defs/sources/coal.asp 51 kcal /kg kcal /kg kJ/kg kJ/kg 52 low value high value low value high value bit yeal bit yeal to 53 54 Coking Coal 12,500 Lignite 25.40 54 55 Lignite 4,165 17,435 6,435 Sub-bituminous 12,807 56 Patent Fuel and Brown Coal / Peat Briquettes - Anthracite - 57 Peat - Anthracite - 59 Sub-Bituminous Coal and Anthracite 5,700 23,865 12,985 Metallurgical coal col 25,03 59 Sub-Bituminous Coal and Anthracite 5,700 17,435 23,865 12,985 Metallurgical coal col 25,03	48												
S0 www.iea.org/stats/defs/sources/coal.asp 51 kcal /kg kcal /kg kJ/kg <	49						Interr	ational Energy A	gency				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	50						www.iea.o	rg/stats/defs/source	es/coal.asp				
32 100 Value nign value <t< td=""><td>51</td><td></td><td></td><td>kcal /kg</td><td>kcal /kg</td><td>kJ/kg</td><td>kJ/kg</td><td></td><td></td><td>hans of the United</td><td></td><td>EPA values</td><td>Tg C / Q Btu</td></t<>	51			kcal /kg	kcal /kg	kJ/kg	kJ/kg			hans of the United		EPA values	Tg C / Q Btu
54 Coking Coal 12,500 Lignite 22,500 55 Lignite 4,165 17,435 6,435 Sub-bituminous 12,870 56 Patent Fuel and Brown Coal / Peat Briquettes - Bituminous - 57 Peat - Anthracite - 58 Other Bituminous Coal and Anthracite 5,700 23,865 12,985 "Ibspecified" ext 25,03 59 Sub-Bituminous Coal 4,165 5,700 17,435 23,865 12,985 "Externational coal" ext 25,03	52 53			low value	nign value	low value	nign value			btu per lb	FDA 20	Million Btu/sh ton 11 App 4 Table Δ-249	το / Dillion Btu Table Δ-251
55 Lignite 4,165 17,435 6,435 Sub-bituminous 12.87 56 Patent Fuel and Brown Coal / Peat Briquettes - Bituminous - 57 Peat - Anthracite - 58 Other Bituminous Coal and Anthracite 5,700 23,865 12,985 412,985 ext 25,97	54	Coking Coal								12,500	Lignite	25.00	26.65
56 Patent Fuel and Brown Coal / Peat Briquettes - Bituminous - 57 Peat - Anthracite -	55	Lignite			4,165		17,435			6,435	Sub-bituminous	12.87	26.50
or rear. - Anthracte - 58 Other Bituminous Coal and Anthracite 5,700 23,865 12,815 Mathracite col 25.63 59 Sub-Bituminous Coal 4165 5.700 17,435 23,865 12,985 "Inspecified" ext 25.97	56	Patent Fuel and Brown Coal	/ Peat Briquettes							-	Bituminous	-	25.44
Set Distributions Coal Distreac <thdistributions coal<="" th=""> <</thdistributions>	<u>57</u>	Peat Other Bituminous Cool and /	Inthracite	5 700		23 865				- 12 815	Anthracite Metallumical coal	- 25.63	28.28
	59	Sub-Bituminous Coal		4,165	5,700	17,435	23,865			12,985	"Unspecified"	exi 25.97	25.34
60	60					·				, 	· · ·		

	Q	R		S		Т		U		V		W	Х		Y	Z	A	A	AB A
				ED											t a via a				
2				EP		nate Le	eader	s: Emi	ssion	Facto	rs toi	r Greennou	se Gas	s inver	itories				
3							EPA (limate Lea	ders data,	calculation	is by E S	Source / Richard Hee	ede						
5								www.epa.g	Last M	lodified: 21	Mav 201	2							
6											-								
7	-			de al a se Fra	-														
8	2	tationary Com	Dustion En	hission Fa	ctors														
9		Fuel Type		I la attina l	(also	00 E+		CO 5		00 East		CO 5				CO Franke			
10		Fuel Type		Heating v	/alue	CO2 Fact	Or Deu	CU ₂ Fact	OF	CU ₂ Fact	or	CU ₂ Factor		ICTOF	N ₂ U Factor	CO ₂ Factor		actor	N ₂ U Factor
12		Coal and Cok	e	mmbtu/shu		kg CO ₂ /mm	IBTU	kg C/million	i blu	Kg C/ to	n l	kg C/tonne	g un₄ /n	IMBLU	g N ₂ O / mmbtu	kg CO ₂ /short	con g CH4/s	nort ton	g N ₂ O / short ton
13	Anth	racite Coal	•		25.09	1	03.54		28.24	7	08.43	780.90		11	1.6	2,	598	276	40
14	Bitur	ninous Coal			24.93		93.40		25.47	6	34.98	699.94		11	1.6	2,	328	274	40
15	Sub-	bituminous Coal			17.25		97.02		26.46	4	56.39	503.08		11	1.6	1,	674	190	28
17	Light	d (Commercial Sect	or)		21.39		95.36		25.28	<u> </u>	73.40 55.66	612 51		11	1.0	2	38	235	34
18	Mixe	d (Electric Power Se	ector)		19.73		94.38		25.74	5	07.80	559.75		11	1.6	1,5	362	217	32
19	Mixe	d (Industrial Coking))		26.28		93.65		25.54	6	71.15	739.81		11	1.6	2,	161	289	42
20	Mixe	d (Industrial Sector))		22.35		93.91		25.61	5	72.37	630.93		11	1.6	2,	099	246	36
21	Coke	9			24.80	1	02.04		27.83	6	90.10	760.70		11	1.6	2,	531	273	40
23				FIA AFR 20	010 Table	7 2. Coal Pro	duction	data for 201	0										
24				percent by	/ rank	million to	ns	rank	U III							TAE	LE 1.2		
25					6.7%		73.2 lig	Inite						DEFAU	LT NET CALORIFIC VALUE	S (NCVs) AND LOWER	ND UPPER LIMITS OF	THE 95% CONF	DENCE INTERVALS ¹
26					46.2%		501.2 su	ib-bituminou	IS					Fuel type	English description		Net calorific	Lower	Upper
28					46.9%		1 9 or	tuminous						Crude Oil			42.3	40.1	44.8
29					100%	1.	085.3 to	tal						Orimulsion	1		27.5	27.5	28.3
30			L			,								Natural Ga	s Liquids		44.2	40.9	46.9
31			EPA (20	1) US Inven	tory, Anne	x 4, Table A-	-251: 200	9 Potential	Emissions 2	009				e	Motor Gasoline		44.3	42.5	44.8
32			A	pparent cons	sumptior	Percent	: (Carbon Coeff	icients Po	tential emi	ssions	Percent % of pot amissions		isoli	Aviation Gasoline		44.3	42.5	44.8
34			Lignite	Q ВШ	0.9		4.1%	ig c / Q	26.65	ig coz-	85.31	4.2%		Ö	Jet Gasoline		44.3	42.5	44.8
35		Sub-ł	oituminous		8.6		40.5%		26.50	8	39.40	41.4%		Jet Kerose	ne		44.1	42.0	45.0
36		E	Bituminous		11.8		55.2%		25.44	1,1	00.24	54.2%		Shale Oil	selle		38.1	32.1	45.2
37			Anthracite		0.0		0.2%		28.28		4.56	0.2%		Gas/Diesel	Oil		43.0	41.4	43.3
38			Coke				0.0%		31.00		-	0.0%		Residual F	uel Oil		40.4	39.8	41.7
40		L. L.	total		21.3	1	00.0%		23.34	2,	029.5	100.0%		Liquefied I	Petroleum Gases		47.3	44.8	52.2
41										,				Ethane			46.4	44.9	48.8
42						TABLETT						7		Naphtha			44.5	41.8	46.5
43		D	EFAULT EMIS	SION FACTOR	RS FOR STA	TIONARY CO	MBUSTION	IN THE ENE	RGY INDUS	TRIES				Lubricants			40.2	33.5	42.3
45				(kg of gre	enhouse g	as per TJ on	a net cal	orific basis)						Petroleum	Coke		32.5	29.7	41.9
46			T	<u> </u>			С ^щ			NO		=		Refinery F	eedstocks		43.0	36.3	46.4
47				02						N2U		_		_	Refinery Gas ²		49.5	47.5	50.6
48		Fuel	Default	-		Default			Default					er O	Paraffin Waxes		40.2	33.7	48.2
50			factor	Lower	Upper	factor	Lower	Upper	factor	Lower	Upper			Oth	White Spirit and SB	P	40.2	33.7	48.2
51												=		Anthracite	Other Petroleum Pro	ducts	40.2	21.6	48.2
52		Anthracite	98 300	94 600	101000	1	0.3	3	r 1.5	0.5	5	-		Coking Co	al		28.2	24.0	31.0
53		Coking Coal	94 600	87300	101000	1	0.3	5	r 1.5	0.5	5			Other Bitu	minous Coal		25.8	19.9	30.5
55		Coal	94 600	89 500	99 70) 1	0.3	3	r 1.5	0.5	5			Sub-Bitum	inous Coal		18.9	11.5	26.0
56		Sub-Bituminous	06 100	02.800	100000	1	0.2	2	. 15	0.5	5	1		Lignite			11.9	5.50	21.6
57		Coal	90 100	92 800	100000	1	0.5	,	r 1.5	0.5	2	_		Oil Shale a	and Tar Sands		8.9	7.1	11.1
58		Lignite	101 000	90 900	115000	1	0.3	3	r 1.5	0.5	5	_		Brown Co:	IDCC (2006) Code	alinaa Chantar 1	20.7	15.1 blo 1 2	32.0
60 01	IPCC	(2006) Guidelines,	Vol. 2: Ener	gy, Table 2.2	2: Default I	Emissions Fac	ctors for S	tationary Co	ombustion i	n the Energ	y Industri	ies, page 2.15; kg CC)2/TJ		IF CC (2008) GUID	ennes, chapter 1:			

AD	AE	AF	AG	AH	Al	AJ	AK	AL	AM	AN	AO	AP	AQ	AR
1														

2											
4											1
6	TAE DEFAULT VALUES	LE 1.3 DF CARBON CONTENT				DE	TABLI FAULT CO ₂ EMISSION FA	E 1.4 CTORS FOR COM	BUSTION ¹		
8 9	Fuel type English description	Default carbon content ¹	Lower	Upper	Fue	el type English description	Default carbon content	Default carbon	Effective	CO ₂ emission (kg/TJ) ²	a factor
<u>10</u> 11	Crude Oil	(kg/GJ)	19.4	20.6		······································	(kg/GJ)	oxidation factor	Default value ³	95% confid	ence interval
12	Orimulsion	21.0	18.9	23.3			A	В	C=A*B*44/	Lower	Upper
14	Natural Gas Liquids	17.5	15.9	19.2	Сги	de Oil	20.0	1	73 300	71 100	75 500
15	Motor Gasoline	18.9	18.4	19.9	Orin	nulsion	21.0	1	77 000	69 300	85 400
17	Aviation Gasoline	19.1	18.4	19.9	Nati	ural Gas Liquids	17.5	1	64 200	58 300	70 400
18	Jet Gasoline	19.1	18.4	19.9	2	Motor Gasoline	18.9	1	69 300	67 500	73 000
20	Jet Kerosene	19.5	19	20.3	isolin	Aviation Gasoline	19.1	1	70 000	67 500	73 000
21	Other Kerosene	19.6	19.3	20.1	Ö	Jet Gasoline	19.1	1	70 000	67 500	73 000
23	Shale Oil	20.0	18.5	21.6	Jet I	Kerosene	19.5	1	71 500	69 700	74 400
24		20.0	10.5	20.4	Oth	er Kerosene	19.6	1	71 900	70 800	73 700
26	Pasidual Fuel Oil	20.2	20.6	21.5	Shai	le Oil	20.0	1	73 300	67 800	79 200
28	Linefed Deterland Coort	17.0	16.0	17.0	Gas	/Diesel Oil	20.2	1	74 100	72 600	74 800
29	Exquened Petroleum Gases	17.2	10.8	17.9	Res	idual Fuel Oil	21.1	1	77 400	75 500	78 800
31	Ethane	10.8	15.4	18.7	Liqu	uefied Petroleum Gases	17.2	1	63 100	61 600	65 600
32	Naphtha	20.0	18.9	20.8	Etha	ane	16.8	1	61 600	56 500	68 600
34	Bitumen	22.0	19.9	24.5	Nap	htha	20.0	1	73 300	69 300	76 300
35	Lubricants	20.0	19.6	20.5	Bitu	imen	22.0	1	80 700	73 000	89 900
36	Petroleum Coke	26.6	22.6	31.3	Lub	ricants	20.0	1	73 300	71 900	75 200
38	Refinery Feedstocks	20.0	18.8	20.9	Petr	oleum Coke	26.6	1	97 500	82 900	115 000
40	Refinery Gas ²	15.7	13.3	19.0	Ken	Refinery Cos	20.0	1	73 300	48 200	70 000 60 000
41	Paraffin Waxes	20.0	19.7	20.3	r Oil	Paraffin Wayes	20.0	1	72 300	48 200	74 400
43	White Spirit & SBP	20.0	19.7	20.3	Othe	White Spirit & SBD	20.0	1	73 300	72 200	74 400
44	Other Petroleum Products	20.0	19.7	20.3	Oth	er Petroleum Products	20.0	1	73 300	72 200	74 400
46	Anthracite	26.8	25.8	27.5	Anf	hracite	26.8	1	98 300	94 600	101.000
47	Coking Coal	25.8	23.8	27.6	Cok	ing Coal	25.8	1	94 600	87 300	101 000
49	Other Bituminous Coal	25.8	24.4	27.2	Oth	er Bituminous Coal	25.8	1	94 600	89 500	99 700
<u>50</u> 51	Sub-Bituminous Coal	26.2	25.3	27.3	Sub	-Bituminous Coal	26.2	1	96 100	92 800	100 000
52	Lignite	27.6	24.8	31.3	Lig	nite	27.6	1	101 000	90 900	115 000
53 54	Oil Shale and Tar Sands	29.1	24.6	34	Oil	Shale and Tar Sands	29.1	1	107 000	90 200	125 000
55	IPCC (2006) Guidelines, Chapter 1: Introd	uction, Table 1.3		+	+	IPCC (2006) Guidelines, Chapter 1: I	ntroduction, Tab	le 1.4		++
56 57 58 59 60 81											

	AS	AT	AU	AV	AW	AX	AY	AZ	BA	BB	BC		BD		BE	E	ßF		BG	Bł	H BI
1																					
			Table A-26	9: Conversion	Factors to E	nergy Units				Table FE5 Avera	ne Carbor	Dioxi	de Emiss	ion Facto	rs for Co	al-Consun	nina Sec	tor an	d State	1980 and	1992
2			Fuel Type (Units)		Factor					ige carbor					arconsun	ing sec		u State,	1500 and	11332
3			Solid Fuels	(Million Btu/S)	ort ton)	Tuctor					Sector										
4			Anthracit			22 573				State	Electric U	Jtilities	ndustrial		Residentia	al/Commercial	State Av	erageb			
5			Ritumina			22.575							oking Coal	Other Coal				orugo			
6			Cub hite	us coar		23.09				Alahana	1980 1	1992 1	980 1992	1980 1992	1980	1992	1980	1992			
7			Sub-bitur	unous coal		17.14				Alabama	205.0 2	205.3 2	205.5 206.1	205.5 205.7	205.4	205.5	205.1	205.4			
8			Lignite			12.800				Arizona	208.0 2	207.7		209.2 206.7	- -	208.6	208.1	207.6			
9			Соке			24.8				Arkansas	212.7 2	212.7 -		201.4 205.2	205.3	222.3	210.7	212.5			
10			Natural Ga	s (Btu/Cubic fo	ot)	1,027				California		- 2	.08.7 -	205.6 204.2	204.5	204.1	207.5	204.1			
11			Liquid Fue	s (Million Btu/	Barrel)					Colorado	211.5 2	209.8 2	12.6	212.6 212.5	5 212.6	211.0	211.7	209.9			
12			Motor ga	soline		5.150				Connecticut	- 2	204.9 -	· -	- 204.7	226.1	220.2	226.1	205.2			
12			Aviation	gasoline		5.048				Delaware District of Colum	206.0 2	206.9 -	· -	205.9 207.4	221.8	221.1	206.0	207.0			
14			Kerosene			5.670				Florida	204.0	204.4		203.0 -	205.0	200.3	205.4	200.5			
15			Jet fuel, k	erosene-type		5.670				Georgia	204.3 2	204.8 -		204.9 204.9	204.7	204.9	204.3	204.8			
16			Distillate	fuel		5.825				Hawaii			·	- 204.4	- I		- 4	204.4			
17			Residual	oil		6.287				Idaho			· -	212.6 212.2	205.4	205.0	210.7	211.3			
18			Naphtha i	for petrochemica	ıls	5.248				Illinois	207.1 2	206.2 2	05.2 206.5	204.2 203.7	203.9	203.9	206.7	205.9			
19			Petroleun	1 coke		6.024				Indiana	204.0 2	205.6 2	05.0 206.0	203.7 204.5	203.7	203.8	204.3	205.5			
20			Other oil	for petrochemic	als	5.825				Kansas	207.2 2	210.9	-	201.9 205.3	203.1	204.2	209.0	210.8			
21			Special n	aphthas		5.248				Kentucky	204.0 2	204.1 2	04.6 206.3	205.4 205.4	204.6	204.6	204.1	204.2			
22			Lubricant	s		6.065				Louisiana	212.7 2	212.9 -		203.9 210.9	201.3		212.1	212.8			
23			Waxes			5.537				Maine			· _	206.0 204.9	216.2	213.0	207.9	205.3			
24			Asphalt			6.636				Maryland	206.6 2	207.0 2	.05.9	206.1 208.4	210.6	211.7	206.3	207.1			
25			Still gas			6 000				Michigan	206.0	208.8		206.3 207.0	218.2	214.1	207.6	206.9			
26			Misc pro	ducts		5 796				Minnesota	212.9 2	213.0 -		211.6 211.8	208.6	212.3	212.7	212.9			
28			EPA (2011) II	S Inventory Anna	v 6: Emission P	actors table A-26	0			Mississippi	204.7 2	204.5 -		204.0 204.6	6 202.6	227.4	204.7	204.5			
29			LFA (2011) 0.	3. Inventory, Anne	x 0. LIIIISSIOITT	actors, table A-20	55.			Missouri	204.5 2	206.2 2	.05.2 -	203.6 204.5	i 202.1	203.4	204.5	206.1			
30										Montana	213.9 2	213.5	<u> </u>	211.2 211.4	205.6	213.3	213.7	213.5			
31	Γ	In pounds of carbon dio	oxide per million	n Btu, U.S. average	factors are 22	27.4 for anthracite	, 216.3 for lignite	е,]	Nebraska	211.7 2	212.7 -		212.3 213.1	212.6	219.2	211.7	212.7			
32		211.9 for subbituminou	us coal, and 20	5.3 for bituminous	coal. Coking o	oal US Average (1	992): 206.2 lb C	02 per million Bt	u.	New Hampshire	206.9 2	206.3		204.3 204.	200.4	204.1	207.0	206.5			
33		Coal used to produce of	coke is virtually	all bituminous in r	ank; less than	1 percent is anthr	acite.			New Jersey	206.6 2	206.6 -		218.3 207.3	3 227.2	227.1	207.1	206.8			
34										New Mexico	205.7 2	205.7 -		212.0 212.7	209.8	206.3	205.7	205.7			
35										New York	205.7 2	206.1 2	05.5 206.1	206.9 207.0	218.9	218.0	206.3	206.5			
36	-		()					1		North Carolina	205.6 2	205.8 -		204.8 205.7	204.9	206.2	205.6	205.8			
37		www.engineeringtooibo	ox.com/classing	ation-coal-d_164.	ntmi					Ohio	204.4 2	204.4 2	05.4 206.4	204.0 204.5	5 203.8	205.5	204.5	204.6			
38		Tuniaal Maintuna Conta	at in Coal							Oklahoma	210.5 2	212.6 -		202.2 207.5	5 205.7	207.0	210.0	212.3			
39		Typical Moisture Conter	nt in Coai	Anthracita Coal	· 2 8 - 16 3 w	hight %				Oregon	212.7 2	212.9 -		212.7 211.5	5 205.6	204.1	212.5	212.8			
41			•	Rituminous Coal	· 2 2 - 15 9 w	eight %				Pennsylvania	206.1	206.2 2	05.7 206.1	207.9 208.5	221.2	219.7	206.4	206.7			
42			•	Lignite Coal : 39	weight %					Knode Island	204.9		-	205.0 205.3	223.9	227.4	217.2	205.0			
43				5	5					South Dakota	218.1	218.8		210.5 212.7	212.0	212.8	217.6	217.9			
44		Typical Fixed Carbon Co	ontent in Coal							Tennessee	204.0	204.0 2	10.2 -	204.8 205.5	204.5	204.6	204.1	204.2			
45			•	Anthracite Coal	: 80.5 - 85.7 v	veight %				Texas	213.0 2	212.9 2	- 8.60	212.3 212.3	3 213.7	211.0	212.8	212.9			
46			•	Bituminous Coal	: 44.9-78.2 w	eight %				Utah	204.1 2	204.3 2	10.8 205.6	205.2 204.1	204.1	204.1	205.7	204.4			
47			•	Lignite Coal : 31	.4 weight %					Vermont	205.7 -			207.8 212.2	227.4	227.4	216.0	216.8			
48										Washington	205.9 2	209.3		206.3 205.8	205.0	206.9	208.3	209.1			
49		ypical Bulk Density of	Coal	Anthrocity Cr!		2) 000 030 ((m2)			West Virginia	206.9 2	207.0 2	05.3 206.7	205.4 206.6	205.0	210.2	206.6	207.0			
50			-	Anthracite Coal	: 5U - 58 (Ib/fi	ιο), ουυ - 929 (kg +3) 673 - 912 (μ	j/m3)			Wisconsin	207.0 2	209.9 2	.05.4 -	205.5 206.1	205.8	204.9	206.8	209.5			
52			•	Lignite Coal • 40	+2 - 37 (10/1 - 54 (lb/ft3)	641 - 865 (kg/m	3)			Wyoming	212.7 2	212.0 -	-	212.0 212.5	5 212.3	212.7	212.6	212.1			
53				2.grifte 6001 . 40	o i (ib/ i co),	5 005 (kg/m	-,			U.S. Average ^b	206.7 2	207.7 2	05.8 206.2	205.9 207.1	210.6	211.2	206.5	207.6			
54		Typical Ash Content in	Coal							^a No allowances h	nave been made t	for carbon	retained in nor	-energy coal che	mical byprodu	cts from the coal	carbonization	process.			
55			•	Anthracite Coal	: 9.7 - 20.2 we	eight %				Weighted average	ge, me weights t	soou are oo	maampoon val	and by sector.							
56			•	Bituminous Coal	: 3.3-11.7 wei	ght %			B.D. Hong and E	E. R. Slatick (1994)	Carbon Dic	oxide Er	mission Fa	actors for (Coal, orig	inally publi	shed in E	inergy I	Informatio	on Adminis	tration,
57			•	Lignite Coal : 4.2	2 weight %				Quarterly Coal	Report, January-Ap	ril 1994, D	OE/EIA	-0121(9	4/Q1) (Wa	shington	, DC, Augus	st 1994)	, pp. 1	-8.)		
58]													
59																					
01																					

	CA	CB	CC	CD	CE	CF	CG	СН	CI	CJ	СК	CL	СМ	CN	CO	СР	CQ
1																	

126.3

222.3

514.9

40.9

291.9

191.1

117.5

94.2

123.3

34.4

95.8

97.2

689.5

184.5

Reported resource assessments by the BGR since 1976. The physical tons of coal are converted into btce (billion tons of coal equivalent) for reasons of comparison. For comparison, 1 btce = 833 Mtoe.

Energy Watch Group (2007) Coal: Resources and Future Production, Jul07, 47 pp, by Werner Zittel & Jorg Schindler (Ludwig Bolkow Systemtechnik), Ottobrunn, Germany, 47 pp. www.energywatchgroup.org

Cell: H9

Comment: Rick Heede:

U.S. EPA Climate Leaders (2011) Emissions Factors for Greenhouse Gas Inventories, www.epa.gov/climateleaders/guidance/ghg-emissions.html This data source allows calculation of kg Carbon per tonne of coal produced by rank and by extension tCO2 per tonne of coal.

We compare these values to the coefficients in U.S EPA (2011) Inventory of U.S. Greenhouse Gas Emissions and Sinks, 1990-2009, Annnex 2: Methodology and Data for Estimating CO2 Emissions from Fossil Fuel Combustion, Annex 2, Table A-37: Carbon Coefficients for Coal by Consuming Sector and Coal Rank (Tg/QBtu, 1990-2009) in cell E10.

Cell: 110

Comment: Rick Heede:

Accounting for oxygen isotopes, personal communication, Kevin Baumert, World Resources Institute.

Cell: L10

Comment: Rick Heede:

CMS adds methane emissions from coal operations in the entity summary worksheet; see also the "Coal Emissions Factor Calc" worksheet for details.

Cell: D11

Comment: Rick Heede:

US EPA (2011) Inventory of U.S. Emissions, Annex 4 IPCC Reference Approach for Estimating CO2 Emissions from Fossil Fuel Combustion, Table A-249: Conversion Factors to Energy Units (Heat Equivalents), lists coal types by rank in million Btu per short ton. "Average utility coal is derived from coal consumed by electric utilities;" see note below.

Cell: E11

Comment: Rick Heede:

U.S. EPA Climate Leaders (2011) Emissions Factors for Greenhouse Gas Inventories, www.epa.gov/climateleaders/guidance/ghg-emissions.html We compare this data to the coefficients in U.S EPA (2011) Inventory of U.S. Greenhouse Gas Emissions and Sinks, 1990-2009, Annnex 2: Methodology and Data for Estimating CO2 Emissions from Fossil Fuel Combustion, Annex 2, Table A-37: Carbon Coefficients for Coal by Consuming Sector and Coal Rank (Tg/QBtu, 1990-2009). Also compared to IPCC default emission factors in IPCC (2006) Guidelines; talbes reproduced at right.

EPA	Climate Leaders 2011	conversion	EPA 2011 U.S. Inv.	IPCC default v	alues
	kgC/MMBtu	kgC/GJ	kgC/GJ	kgC/GJ	
Lignite	26.28	24.91	26.65	27.60	
Sub-bit.	26.46	25.10	26.50	26.20	
Bitumin.	25.47	24.16	25.44	25.80	
Antracite	28.24	26.79	28.28	26.80	
Ind. cokin	g 25.54	24.23	25.61	25.80	
Electric P	ower 25.74	24.42	26.05	26.00 (average of bit & sub-bit)

Cell: F11

Comment: Rick Heede:

Calculated by multiplying million Btu/ton by kgC/million Btu = kgC/ton.

Cell: G11

Comment: Rick Heede:

Calculated by multiplying kgC/ton by 1.1023 tons per tonne.

Cell: J11

Comment: Rick Heede:

CMS applies a factorfor non-fuel uses of coal (averaged over 1980-2010 from US data, EIA, see "Non-fuel uses" worksheet). U. S. Energy Information Administration (2011) Annual Energy Review 2010 Table 1.15 Fossil Fuel Consumption for Nonfuel Use Estimates, 1980-2010, www.eia.gov/totalenergy/data/annuał

CMS analysis includes a ten percent sequestration factor for the coal used for non-energy purposes.

The CMS result is 0.016 percent of total emissions from coal being sequestered, thus 1-0.00016 (0.99984) of the carbon in the coal is combusted to Carbon Dioxide) is slightly higher than the factor applied by CDIAC (0.982); CDIAC includes a 99 percent oxidation factor, which IPCC protocol eliminated in the 20006 Guidance.

Cell: 012

Comment: Rick Heede:

U.S. EIA (2011) Annual Energy Review, Table 7.2: Coal Production by rank of coal, data for 1950 to 2010. The gradual decrease reflects the increased proportion of western coals, which are chiefly sub-bituminous.

Cell: H23

Comment: Rick Heede:

Data sources:

IPCC (2006) IPCC Guidelines for National GHG Inventories, Volume 2: Energy, Introduction, Table 1-3: Default Values of Carbon Content (in kgC/GJ), page 21.

Also see cell notes below.

Cell: F25

Comment: Rick Heede:

2. IPCC values: 2006 IPCC Guidelines for National GHG Inventories, Volume 2: Energy, Introduction, Table 1.3: Default Values of Carbon Content (in kgC/GJ), page 21. Note: IPCC does not list "average utility coal", which the Carbon Majors project uses as a default value for coal producers that show coal production as either "thermal coal" or does not specify coal rank. CMS estimates this value by averaging bituminous and sub-bituminous coal.

Cell: 027

Comment: Rick Heede:

This calculation is based on US EIA data for 1950-2010: heat content of coal consumed by electric utilities, AER (2011), Table A-5. It is done to check on the reasonableness of assuming an average coal heat content of 21.2 million Btu per short ton of utility coal and/or unknown coal rank mined by coal operators from 1900 to 2010. While utility coal varies by time and geography, most coal post-World War II has been combusted in utility boilers.

Cell: 029

Comment: Rick Heede:

Adjusted by weighting for relative production quantities, 2010. U.S. EIA (2011) Annual Energy Review, Table 7.2: Coal Production, data for 2010.

Cell: E32

Comment: Rick Heede:

IPCC does not show average thermal coal used for electricity generation. We average the heating values of bituminous and sub-bituminous. This may be revised.

Cell: E33

Comment: Rick Heede:

CMS has not found IPCC (nor US EIA) data on world coal consumption by rank. (EIA data shows production for hard coal, bituminous, lignite, and metallurgical coal, and anthracite -- though not for sub-bituminous coal.) Search for UN and IEA statistics on coal consumption (or production, if consumption data not available) for thermal uses and/or electricity boilers.

BP Annual Statistical Review does not show production or consumption by rank. BP rpt does show "Proved reserves at end 2011" of anthracite and bituminous (404,762 million tonnes, 47.01 percent of total) and sub-bituminous and lignite (456,176 million tonnes, 52.99 percent of total). Clearly this proportion does not equal the proportion of coal produced and/or consumed for thermal uses.

Cell: BT37

Comment: Rick Heede:

Jonker, Chris (2001) "Greenhouse Gas, Australian Coal Supply and Rising Import Demand A Contradiction or an Opportunity?" 24-25Sep01, Director, Barlow Jonker Pty Ltd At: EU-Australia Conference, Aachen, Germany, 13 pp. page 12: "One (1) tonne of export quality thermal coal contains 27 GJ of energy, while 1 cubic metre of methane contains 37 MJ of energy. On average one tonne of coal in-situ contains 10 cubic metre of methane, which represents 370 MJ of energy, equivalent to 0.014 tonnes of export quality thermal coal. Since methane is estimated to be 20 times as greenhouse intensive as CO2, per tonne of coal produced, the venting to air of methane has a greenhouse contribution of the same order as that of burning 0.28 tonne of coal in a power station. On the other hand the production of electricity from methane produces considerably less CO2 than the production of electricity from coal." Also: Energy Intensity In Coal Mining The utilization of energy in coal mining, i.e. the energy intensity, averaged 0.21GJ/tonne equivalent to 0.009GJ/GJ and ranged as follows: (seee table), and: Greenhouse Gas Emission Intensity In Coal Mining Expressed as CO2 equivalent the industry averaged 0.079 tonnes CO2 per tonne saleable coal. The ranges were as follows (see table).

Cell: H38

Comment: Rick Heede:

This table averages the values in Table 1 and 2 above; see cell notes above.

Cell: L39

Comment: Rick Heede:

CMS adds methane emissions from coal operations in the entity summary worksheet; see also the "Coal Emissions Factor Calc" worksheet for details.