

								T U		1 14/	V	V	7	
_	<u> </u>	0		P	Q	К	5	I U	V V	l w	X	ř	Z	
1	EIA / EPA background data on default values for natural gas											Dry natural	Average of	
2			-					-	1		prou n, ninv	gas, Tirrv	Mark & Dry	
3										1949	1,120	1,035	1,078	
4	Table A-40: Composition of Natural Gas (Percent)			I	able A-43: C	arbon Co	ntent of Flare Ga	ıs (Ty C/QBtu)		1950	1,119	1,035	1,077	
5	Compound Average	N	fedian	Re	elevant Sub-	Sample	A	verage Carbon Content	_	1955	1,120	1,035	1,078	
6	Methane 93.07		95.00	>1	,100 Btu/cf			15.31		1960	1,107	1,035	1,071	
7	Ethane 3.21		2.79	So	urce: EPA (20	10)				1965	1,101	1,032	1,067	
8	Propane 0.59		0.48	E	PA (2012) Tak	ole A-43, A	nnex 2, page A-65			1970	1,102	1,031	1,067	
9	Higher Hydrocarbons 0.32		0.30							1971	1,103	1,031	1,067	
10	Non-hydrocarbons 2.81 Higher Heating Value (Btu per cubic foot) 1.027		1.43 1.031					EPA Energy Hub		1972	1,100	1,027	1,064	
11	Source: Gas Technology Institute (1992).		-,					0.001028 mmBtu/scf		1973	1,093	1,021	1.057	
12								53.02 kgCO2/mmBtu	1	1974	1 097	1 024	1,061	
13								0.054505 kgC02/scf		1975	1,095	1,021	1,058	
14	Table A-42: Carbon Content Coefficients for Natural Gas (Ty Carbor	ı/QBi	tu)					54.50 kgCO2/kcf		1976	1,093	1.020	1,057	
15	Fuel Type 1990 1995 1996 1997 1998 1999 2000 2001 2	002	2003 20	004 2005	2006 2007	2008 2	009 2010	14.87 kgC/kcf		1977	1 093	1.021	1.057	
16	Natural Gas 14.45 14.46 14.46 14.46 14.44 14.46 14.47 14.46 1	4.46	14.44 14	.46 14.46	14.46 14.46	14.46 14	4.46 14.46	100.11% % of final (F15	5)	1978	1 088	1 019	1 054	
17	Source: EPA (2010)			· · · ·	- · · ·					1979	1,000	1 021	1,057	
18	FPA (2012) Inventory of U.S. Greenhouse Gas Emissions and Sinks 1990 - 2010	Anne	x 2. Metho	ndology and	Data for Estim	nating CO2	Emissions from Fos	ssil Fuel Combustion		1979	1,092	1,021	1,057	
10	Table A-42: Carbon Content Coefficients for Natural Gas (To Carbon/OBtu) page	A-64		aology and	Butta for Lotan					1900	1,050	1,020	1,002	
19		A-()-4	Table A4	Approx	cimate Heat	t Conten	t of Natural Ga	as, Selected Years, 194	9-2011	1981	1,103	1,027	1,065	
20				(Btu per	Cubic Foot)			,		1982	1,107	1,028	1,068	
21		-		(=== p=:	,					. 1983	1,115	1,031	1,073	
22	Pure methane, 75% C by weigr 14.20 TgC/QBtu			F	roduction			Consumption 1		1984	1,109	1,031	1,070	
23	EPA 2011 1,005 Btu/sf	_	Year	Marketed	D	lry	End-Use Sectors ²	Electric Power Sector ³	Total	1985	1,112	1,032	1,072	
24		1	949	1.120	1.0	035	1.035	1.035	1.035	1986	1,110	1,030	1,070	
25		i	950	1,119	1.0	035	1,035	1,035	1,035	1987	1,112	1,031	1,072	
26		i i	960	1,107	1.0	035	1,035	1,035	1,035	1988	1,109	1,029	1,069	
27		1	965 970	1,101 1,102	1,0	032 031	1,032	1,032 1,031	1,032	1989	1,107	1,031	1,069	
28	Table A- 249: Gonversion Factors to Energy Units (Heat Equivalents)	1	975 976	1,095	1.0	021	1,020	1,026	1,021	1990	1,105	1,029	1,067	
29	Fuel Category (Units) Fuel Type Production Impor	ts 1	977	1,093	1.0	021	1,019	1,029	1,021	1991	1,108	1.030	1.069	
20	Solid Fuels (Million Btu/Short Ton) Anthracite Coal 22.57	- 1	979	1,092	1.0	021	1,018	1,035	1,021	1002	1,110	1 030	1,070	
30	Sub-bituminous Coal 23.89 Sub-bituminous Coal 17.14	1	980 981	1,098	1,0	026 027	1,024	1,035	1,026	1992	1,110	1,030	1,070	
31	Lignite 12.87	1	982 983	1,107	1,0	028 031	1,026	1,036	1,028	1993	1,106	1,027	1,067	
32	Unspecified 25	.00	984	1,109	1,0	031	1,030	1,035	1,031	1994	1,105	1,028	1,067	
33	Natural Gas (BTU/Cubic Foot) 1,026 1,0 Liquid Fuels (Million Btu/Barrel) Crude Oil 5.80 5	025	986	1,110	1.0	030	1,029	1,034	1,030	1995	1,106	1,026	1,066	
34	Nat Gas Liquids and LRGs 3.69 3	.69	988	1,109	1,0	029	1,029	1,028	1,031	1996	1,109	1,026	1,068	
35	Motor Gasoline 5.22 5	.22 1	989	1,107 1,105	1,0	031 029	1,031 1,030	°1,028 1,027	1,031 1,029	1997	1,107	1,026	1,067	
36	Aviation Gasoline 5 Kerosene	.05 1	991 992	1,108	1,0	030	1,031	1,025	1,030	1998	1,109	1,031	1,070	
37	Jet Fuel	.67	993	1,106	1.0	027	1,028	1,025	1,027	1999	1,107	1,027	1,067	
38	Distillate Fuel 55 Residual Oil 6	.83 .29 1	995	1,106	1,0	026	1,029	1,020	1,028	2000	1,107	1,025	1,066	
39	Naphtha for petrochemical feedstocks 55	.25	996	1,109 1,107	1,0 1,0	026 026	1,027	1,020 1,020	1,026 1,026	2001	1,105	1,028	1,067	
40	Other Oil for petrochemical feedstocks	.83 1	998 999	1,109	1,0	031 027	1,033	1,024	1,031	2002	1,103	1,024	1,064	
41	Special Naphthas 5 Lubricants (.25 2	2000	1,107	1,0	025	1,026	1,021	1,025	2003	1,103	1,028	1,066	
42	Waxes 5	.54 2	2002	R1,103	1,0 B1,0	024	^R 1,025	1,020	R1,028	2004	1,104	1,026	1,065	
43	Asphalt/Road Oil 6 Still Gas	.64 2 .00 2	2003	"1,103 1,104	1,0	028 026	1,029	1,025 1,027	1,028	2005	1,104	1,028	1,066	
44	Misc. Products 5	.80 2	2005	1,104	1,0	028	1,028	1,028	1,028	2006	1,103	1,028	1,066	
45	Data Sources: Coal and lignite production: EIA (2010); Unspecified Solid Fuels: EIA (2011); Coke, Natural Gas and Peb	roleu 2	2007	R1,102	R1.(027	^B 1,027	1,027	^R 1,027	2007	1,102	1,027	1,065	
46		2	2009	1,101	1,0	025	1,025	1,025	1,027	2008	1,100	1,027	1,064	
4/	US EPA (2011) Inventory of U.S. Emissions, Annex 4: IPCC Reference Approach	2	2010	ⁿ 1,097 ^E 1,097	R1,0 E1,0	023 022	°1,023 ^E 1,023	1,022 P1,021	^{P1,023} ^E 1,022	2009	1,101	1,025	1,063	
48	for Estimating CO2 Emissions from Fossil Fuel Combustion	-								2010	1,097	1,023	1,060	
49							A			2011	1,097	1,022	1,060	
50						EIA (2012)	Annual Energy Rev	view 2011, Table A4.		average	1,104.3	1,027.6	1,065.9	
31					1	Note: "The	values in this table	e are for gross heat contents."		1,042			INKEU CADIE I	

	AB	AC		AD	AE		AF		AG	A	H	Å	AI	AJ		AK	Τ	Al	L	AM		AN	AC)	AP		A	Q	AR
1																													
2	IPCC background data on default values for natural gas																												
3		TABLE 2.2 (CONTINUED)															TABLE 1.4 (C	ONTINUED)											
5	DEFAULT EMISSION FACTORS FOR (kg of greenhou:						λ STATIONARY COMBUSTION IN THE <u>ENERGY INDUSTRIES</u> ise gas per TJ on a net calorific basis)							DEFAULT CO ₂ EMISSION FACT						CTORS FOR CO	MBUST	TION ¹							
6					CO2		CH4						T-16-1		glich decovintion		Default carbon	Default carbon		Effective	CO ₂ emissio (kg/TJ) ²	n factor							
8		Fuel		Default emission	Lower	Upper	Default emission	Lower	Upper	Default emission	Lower	Upper		r dei type English description		scription		(kg/GJ)	oxidation Factor		Default	95% confidence interv		val					
9		Coal T	ar	factor	68 200	95 300	factor	03	3	factor	0.5	5	_						Α	В	-	C=A*B*44/	Lower	Uppe	r				
10			Gas	n 44.400	37 200	54 100	. 1	0.3	2	01	0.02	0.2		Natural Gas				1	15.3	1		56 100	54 300	58 30	0				
11			Gas	1 44 400	37 300	34 100	n 1	0.5	,	0.1	0.03	0.5	_	r					IPC	C 2006 Tabl	ر ام 1 ما		1	1					
13		Gases	Oven Gas Blast	n 44 400	37 300	54 100	r 1	0.3	3	0.1	0.03	0.3	_						10	C 2000 Tabl	10 1.4								
14		Derived	Furnace Gas	n 260 000	219000	308 000	r 1	0.3	3	0.1	0.03	0.3				Natural G	Gas		48.00 TJ/	/Gq	1								
16		Д	Oxygen Steel	102.000	145.000	202.000			2		0.02						(4 <u>6</u> .	.5 to 50	0.4 TJ/Gg)	-0									
17			Furnace Gas	n 182.000	145 000	202 000	r 1	0.5	3	0.1	0.05	0.5		2006 IPCC Guidelines for National Greenhouse Gas Inventories, Chapter 1: Introduction, table 1												1.2 Def	ault Ca	lorific Va	lues
19		Natural Gas Municipal Wastes (non-biomass fraction) Industrial Wastes		56 100	54 300	58 300	r 1	0.3	3	0.1	0.03	0.3																	
20				n 91 700	73 300	121 000	30	10	100	4	1.5	15																	
21				n 143 000	110 000	183 000	30	10	100	4	1.5	15	-																
22		Waste	Oils	n 73 300	72 200	74 400	30	10	100	4	1.5	15																	
23		Peat		106 000	100 000	108 000	n 1	0.3	3	n 1.5	0.5	5	_																
24			Wood / Wood	n 112 000	95 000	132 000	30	10	100	4	1.5	15																	
26			Waste Sulphite										-																
27		ofuels	lyes (Black	n 95 300	80 700	110 000	n 3	1	18	n 2	1	21																	
28		lid Bi	Liquor)(a)										_																
29		So	Primary	n 100 000	84 700 1	117 000	30	10	100	4	1.5	15																	
30			Biomass																										
31			Charcoal	n 112 000	95 000	132 000	30	10	100	4	1.5	15	_																
22		fuel	Biodiasals	n 70 800	59 800	84 300	r 3	1	10	0.0	0.2	2	-																
34		quid Bio	Other Liquid	n 79 600	67 100	93 300	r 3	1	10	0.6	0.2	2	-																
<u>35</u> 36		Li	Biofuels Landfill	n 54 600	46 200	66 000	r 1	0.3	3	0.1	0.03	0.3																	
37		liomas	Sludge	n 54 600	46 200	66 000	r 1	0.3	3	0.1	0.03	0.3	\neg																
<u>38</u> 39		Gas I	Other	n 54 600	46 200	66 000	г 1	0.3	3	0.1	0.03	0.3	-																
40		4 -8	Biogas Municipal				-						-																
41		Other no fossil fue	Wastes (biomass fraction)	n 100 000	84 700	117 000	30	10	100	4	1.5	15																	
43		(*)Inclu	ides the biom	ss-derived CO2	emitted from	the black liq	uor combusti	on unit and t	he biomass-	derived CO ₂ e	mitted from	the kraft																	
45		mill	lime kiln.		1		IDCC 1005	0																					
46		n indi	cates a new er cates an emice	mission factor w	men was not	present in the ed since the <i>I</i>	PCC 1996	uidelines.																					
47			callo	and another differ		and the second sec																							
48																													
49																													
50			IPCC	(2006) Gui	delines 20	06, Volum	e 2: Energ	gy, Chapte	er 2: Stat	ionary Con	nbustion,	Table 2	2.2																
51 52																													

BI

Cell: G13

Comment: Rick Heede:

We use the isotopic value of CO2 in converting from carbon to CO2. CO2 conversion is, precisely: CO2/C: (C: 12.0107) + (0 = 15.9994 x 2) = 44.0095/12.0107 = 3.664191. Kevin Baumert, WRI, May 2005, personal communication.

Cell: C15

Comment: Rick Heede:

CMS first considered applying an emission factor based on the IPCC default value and the UN "Standard Heating Value" for natural gas (see Table 2c below), but rejected this EF as being unreasonably high.

CMS and our technical reviewers agreed that applying a factor based on US EPA and EIA factors provides a conserative emission factor based on published, substantiated, and peer-reviewed data. THe EF combines the EPA's value of 14.46 Tg/QBtu with the average HHV heating values of Marketed and Dry Natural Gas Production for 1949-2011.

These factors are documented and described at right.

Cell: D15

Comment: Rick Heede:

EIA and EPA data on carbon content of natural gas (14.46 kgC per million Btu -- usually expressed as 14.46 TgC/QBtu: 14.46 million tonnes of carbon per quadrillion (10^15 Btu)). EPA (2012) Inventory of U.S. Greenhouse Gas Emissions and Sinks, 1990 – 2010, Annex 2: Methodology and Data for Estimating CO2 Emissions from Fossil Fuel Combustion, Table A-42: Carbon Content Coefficients for Natural Gas (Tg Carbon/QBtu), page A-64.

Cell: E15

Comment: Rick Heede:

Natural gas producers typically report "natural gas available for sale", we use the EIA HHV heating values data for 1949-2011 for "Dry Natural Gas Production" from EIA (2012) Annual Energy Review 2011, Table A-4: Approximate Heat Content of Natural Gas 1949-2011 (reproduced on page 2 and linked to cell Y50).

The Marketed Production averages 1,104.3 Btu/scf over 1949-2011, whereas Dry Natural Gas Production averages 1,027.6 Btu/scf. It might be more accurate to average of the "Dry" and "marketed" data sets 1949-2011 to 1,065.9 Btu/scf, but we apply the "dry" heating value as a conservatism.

Note: these are "gross heating value", or HHV. Dry natural gas, on the other hand, has a default gross heating value of 1,028 Btu per cf (or 34.37 MJ/m^3).

Natural Gas Marketed Production is defined as "Natural gas gross withdrawals from production reservoirs, less gas used for reservoir repressuring; nonhydrocarbon gases removed in treating or processing operations; and quantities of vented natural gas and flared natural gas. Includes all quantities of natural gas used in field and processing operations." EIA AER glossary.

Since both the carbon content and heating value factors are HHV we do not need to adjust for the HHV = 1.1 of LHV in this calculation. EPA and EIA both use HHV (unless otherwise noted).

Cell: C17

Comment: Rick Heede:

CMS accounts for company use of produced natural gas in the summary entity worksheet -- along with attributing fugitive methane emissions, vented CO2, flared gas, etc. See the SumRanking.xls worksheet for details. The objective is to attribute CO2 and CH4 emissions to the producing entities that are in addition to marketed marketed natural gas, or in company terminology, "gas available for sale." These reported quantities do not account for fielduse of gas in engines, compressors, processing plants, fugitive emissions, or vented CO2 (separating sour gas CO2 to the atmosphere).

Cell: C19

Comment: Rick Heede:

CMS attributes entrained CO2 removed from raw gas in the summary entity worksheet. See the SumRanking.xls worksheet for details.

The "non-hydrocarbon gas removed from natural gas" rate equalled 3.12 percent (836.7 Bcf of 26,836 Bcf total production) in the U.S. in 2010 (EIA (2011) Natural Gas Annual 2010, Table 1). In addition, 3,431 Bcf was used for repressuring (12.79 percent), 166 Bcf was vented and flared (0.62 percent), 22,402 Bcf was marketed (83.48 percent), and 1,070 Bcf in processing loss (3.99 percent).

Cell: C21

Comment: Rick Heede:

CMS estimates and attributes methane releases from natural gas production, processing, and transportation, as well as flaring, in the Carbon Majors entity summary worksheet. See the SumRanking.xls worksheet for details.

Cell: C23

Comment: Rick Heede:

CMS attributes CO2 emissions from flaring operations at production and processing facilities in the Carbon Majors entity summaary worksheet. See the SumRanking.xls worksheet for details and calculations.

Cell: C25

Comment: Rick Heede:

See the separate worksheet in this workbook ("Non-energy uses"), in which CMS calculates the percentage of the natural gas supplied (on average, over the past 31 years, based on US data by EIA and CMS adjustments for re-emission to the atmosphere) that is sequestered into fertilizers and methanol.

Cell: C27

Comment: Rick Heede:

IPCC 2006 Guidance uses a 100 percent oxidation factor (revised from 99.5 percent in the 1996 Guidance).

Cell: D36

Comment: Rick Heede:

EIA and EPA data on carbon content of natural gas (14.46 kgC per million Btu -- usually expressed as 14.46 TgC/QBtu: 14.46 million tonnes of carbon per quadrillion (10^15 Btu)). EPA (2012) Inventory of U.S. Greenhouse Gas Emissions and Sinks, 1990 - 2010, Annex 2: Methodology and Data for Estimating CO2 Emissions from Fossil Fuel Combustion, Table A-42: Carbon Content Coefficients for Natural Gas (Tg Carbon/QBtu), page A-64.

Cell: E36

Comment: Rick Heede:

We use the heat content of marketed natural gas (US average 1949-2010) at 1,105.9 Btu per cf, equiv to 36.98 MJ/m^3, as representative of produced natural gas (this has varied from 1,088 to 1,120 since 1949). EIA (2011) Annual Energy Review 2010, Table A4 (reproduced on page 2 and averaged in and linked to cell W50).

Note: this is "gross heating value", or HHV. Dry natural gas, on the other hand, has a default gross heating value of 1,028 Btu per cf (or 34.37 MJ/m^3).

Natural Gas Marketed Production is defined as "Natural gas gross withdrawals from production reservoirs, less gas used for reservoir repressuring; nonhydrocarbon gases removed in treating or processing operations; and quantities of vented natural gas and flared natural gas. Includes all quantities of natural gas used in field and processing operations." EIA AER glossary.

Since both the carbon content and heating value factors are HHV we do not need to adjust for the HHV = 1.1 of LHV in this calculation. EPA and EIA both use HHV (unless otherwise noted).

Cell: H36

Comment: Rick Heede:

The new IPCC / UN EF value is 16.3 percent higher than the EPA / EIA value; inverse is 86 percent.

Cell: C38

Comment: Rick Heede:

We derive an emission factor for natural gas production (prior to accounting for non-energy uses, vented CO2, etc) from IPCC default factor (kgC/GJ) and GJ/thousand cubic feet (based on UN Statistics Dept "standard heating value" of natural gas (net calorific value)).

Numerically, this is: 15.30 kgC/GJ * 1.1050 GJ/kcf = 16.91 kgC/kcf, or 61.95 kgC02/kcf.

Cell: D38

Comment: Rick Heede:

The IPCC default value for natural gas is 15.3 kgC/GJ (range from 14.8 to 15.9 kgC/GJ) and is "on a net calorific basis." IPCC Guidelines 2006 Volume 2: Energy, chapter 1: Introduction, Table 1.3. Also listed as 56,100 kgC02/TJ in Table 2.2 on page 3. IPCC 2006 Guidelines vol 2, ch. 2: Stationary Combustion, Table 2.2.

Cell: E38

Comment: Rick Heede:

Calculated in Table 2c below and is based on UN Statistics' heating value for natural gas.

Cell: D40

Comment: Rick Heede:

Standard heating value of natural gas, "net calorific value." See Table V, United Nations (2012) Energy Statistics Yearbook 2009, UN Statistics Division, Jun12; unstats.un.org/unsd/energy/yearbook/default.htm. chapter on natural gas heating values puts "Standard Heat Value" at 39,021 kJ/m^3. Reference to Table 12, page 28, United Nations (1987) Energy Statistics: Definitions, Units of Measure and Conversion Factors, UN Statistical Office, New York, Series F-44, 65 pp., unstats.un.org/unsd/publication/SeriesF_44E.pdf

Cell: D47

Comment: Rick Heede:

Net calorific value of natural gas shown as 48.0 TJ/Gg (range from 46.5 to 50.4 TJ/Gg), IPCC 2006 Guidelines vol 2, ch. 1: Introduction, Table 1.2. Also lists crude oil at 42.3 TJ/Gg, and coal from 11.9 to 28.2 TJ/Gg.

Nowhere does the IPCC show conversions or default values for TJ or Gg per cubic meter of natural gas, or, for that matter, for crude oil or coal.

Thus we resort to UN heating value above.

Cell: D48

Comment: Rick Heede:

The IPCC default value for natural gas is 15.3 kgC/GJ (range from 14.8 to 15.9 kgC/GJ). IPCC Guidelines 2006 Volume 2: Energy, chapter 1: Introduction, Table 1.3. Also listed as 56,100 kgC02/TJ in Table 2.2 at right. IPCC 2006 Guidelines vol 2, ch. 2: Stationary Combustion, Table 2.2.

Cell: R51

Comment: Rick Heede:

"The U.S. Energy Information Administration typically uses gross heat content values." EIA AER Glossary.